Categories
2023

FOLIUM Science launches rapid lateral flow test for the detection of Salmonella.

New molecular test uses Guided Biotics® technology.

FOLIUM Science will be taking to the stage at the AgriTechE REAP Conference on November 8th to launch the latest of their innovative product range to improve animal health and productivity.

The new product, called SWIFTR, is a lateral flow test for the detection of bacterial infection. The first product in the range will be launched at REAP and is for the rapid detection of Salmonella in poultry production. The time it takes to get the test result and identify an infection is reduced to one hour compared to currently available tests which can take up to five days.

The test is also simple to use and requires no special training or laboratory equipment so that it can be carried out on the farm or where action can quickly be taken to protect the health of the flock and to prevent the spread of infection.

Because SWIFTR is a molecular test that uses advanced molecular biology, it can identify small pieces of genetic material from the pathogenic bacteria that the user is looking for in the sample, even down to individual Salmonella serovars where necessary. This means that the test is extremely accurate.

The extent of the infection can also be quantified so that the appropriate measures can be put in place.

“We know that rapid testing for bacterial infection is the Holy Grail for the food industry” say FOLIUM Science CEO Ed Fuchs “Our first SWIFTR test is for the detection of Salmonella but we are also developing tests for other bacteria such as Enterococcus, Clostridium and E.coli. And whilst poultry production is the first step on the ladder, there are numerous applications in animal farming and across the food industry for a test that is quick, simple, and accurate. We are working with our partners in the poultry industry to roll out the use of SWIFTR in poultry production in early 2024.”

SWIFTR uses the same Guided Biotics® technology that has been developed for FOLIUM Science’s feed additive BiomElix. Next year sees the launch of the first product in Brazil, BiomElix One, a feed additive for poultry that targets all Salmonella serotypes.

FOLIUM Science’s Guided Biotics® are based on CRISPR-Cas technology and have received endorsement from the Brazilian National BioSafety Committee (CTNBio) as a non-GM ‘new-breeding technique’. CRISPR-Cas is a defence system that has evolved in bacteria to protect them against invading viruses. FOLIUM Science is harnessing this natural system to manage and modulate bacteria in the microbiome.

“The launch of SWIFTR perfectly complements our feed additive portfolio” says Ed “Not only can we offer a product that detects the presence of infection, but we use the same proprietary Guided Biotics® technology to create and produce an additive that modulates the microbiome to help control infection in the digestive tract of the animal.”

FOLIUM Science will be attending AgriTechE REAP conference in Cambridge, UK on November 8th. The team will be demonstrating the SWIFTR product at their exhibition stand.

Categories
2020

Embracing Innovation in BioScience

In the second of our series of articles, FOLIUM Science considers some of the big challenges in the food supply chain, how attitudes to bioscience and new technologies differ across the world, how funding of new research needs to be managed and where the investment opportunities in bioscience will be.

We asked FOLIUM Science’s in-house experts to reflect on the role that bioscience plays in the food supply chain and draw on their own personal experiences to consider how the future might look.

FOLIUM Science Chief Development Officer, Dr Simon Warner shares some thoughts on how technological change is adopted.

“The last ten years has seen a very different response to new technology depending on where you are in the world.  The US, China and Brazil have embraced new technology much faster than Europe. The focus in Europe has been more orientated towards biological solutions and pesticide reduction, for example, neither of which are bad options but some of the new potent technologies have not fared so well as a result.”

This could be due to inherent beliefs and behaviours that are ingrained within respective societies, as well as the different rates of agricultural and economic growth across the different regions. But it will also be a function of the perceived future and the skills that the next generation will require.

Simon believes that education in the sciences may well be one of the driving factors that impacts the level of adoption of new technologies.

“Developing countries are trying really hard to ensure the next generation benefits from as good a scientific education as possible, whereas in Europe we value other things. The UK in particular is more focussed on finance and other services, and core agriculture in Europe is very small with only a few farmers per head of population. This means that many European consumers have lost touch with agriculture so, although we have seen some great new technologies being developed, their deployment and public acceptance is different around the world”

Genetically modified organisms (GMOs) are an example of this. First developed in the 1970s and developed through second generation technology in subsequent decades, today’s synthetic biology techniques are taking it through a third evolution with the advent of CRISPR technology.

This type of bioscience has the ability to quicken the pace of agricultural growth. The modern strains of wheat and barley were developed using selective breeding of the desired genetic traits; synthetic biology, such as CRISPR can play an important role in this process.

In previous roles, Simon’s experience has been with viral diseases such as Malaria, Zika and Dengue fever.

“Malaria still kills up to three million people a year, with children disproportionately affected. These diseases are mosquito-based and as yet there has been no vaccine developed that is really effective, so the only current route is to manage the insect population”

Simon believes that lessons can be learnt from the way in which these projects were funded. Much of the work on mosquito borne diseases was funded by the Bill and Melinda Gates Foundation, but the Covid-19 pandemic poses a question about whether we will see greater collaboration between scientists or a more siloed, competitive approach.

“Innovate UK has announced a £20m Covid-19-related competition for UK businesses with maximum grants of £50,000 per business. This encourages competition but not collaboration. It is therefore up for debate whether many small laboratories with small amounts of money will deliver a better solution than a bigger collaborative consortium with say a minimum of £1m. Different countries will take different approaches, but it would be good to see the scientific community working together on this challenge”

When it comes to protecting consumers from ongoing food safety risks, it is a matter of making sure that the public do not take food safety for granted and realise that without good science, this will become even more of an issue.

“We could say that banning the use of antibiotics as a growth promoter for livestock production is a sensible policy and to reserve the  use of antibiotics only as veterinary medicines, but the consequences of this could also inadvertently cause contamination in the food supply chain with pathogens and unwanted bacteria such as Salmonella. Therefore by reducing the use of antibiotics to address the issue of antimicrobial resistance, other risks can occur. So we need alternatives that will support animal wellbeing and reduce the risk of infection. Our Guided Biotics® platform is designed to address this”

(Download our technical guide to find out more http://foliumscience.com/our-technology/)

Simon is clear that science will play a big part in a sustainable and secure food supply. With an ever-growing world population, there are some big risks and challenges ahead.

“We all forget, as complacent Europeans, that the world will not have enough food by 2030, so there is a big risk staring us in the face. There won’t be enough food or enough animal protein. This is because of productivity gaps and behavioural changes. China is demanding more meat and the consumption of meat in the western world will not be sustainable as crop acreage and water supply become limiting factors. Science has a role to play in supporting increased productivity from the existing agricultural acreage to combat the issues caused by climate change, changes in rainfall patterns and water scarcity”.

Biotechnology has solved issues of food preservation before.  The use of fermented foods and drinks to combat dirty food and water by developing beers and breads is an example of how biotechnology has always played a role in the safety of our food.

So, in the long term what does this all mean for investors and where should they look to support biotechnology in the future? Simon is clear that technology to drive productivity and efficiency will be key.

“In the long term, the problems that face us will be how to increase crop yield in a world where fewer new crop protection products  are being registered . Finding ways to protect plants and crops is therefore becoming more challenging. The opportunities lie in technology that can enhance productivity and efficiency in a world where resources are becoming increasingly stretched. And, in recognition of the differing public attitudes towards new technology, biological solutions can only improve the rate at which it will be adopted”.

To conclude, new biotechnologies for the food supply chain are vital but the rate of adoption will depend in part on how local populations perceive the science. Implementation is more likely in countries that have historically been more receptive to new technology such as the US, Asia and South America or where a science-based decision-making process is regarded as important.

The optimisation of funding models for research and development will play a part in the success of new initiatives, including finding treatments for global pandemics. It remains to be seen whether a competition-driven or collaboration within larger consortia approaches are more effective.

Finally, the opportunities for investment in biotechnology will be in technologies that deliver production efficiencies, higher yields and that can protect public health from unwanted pathogens.

Categories
2020

BioScience Keeps Us Safe

Never has there been a greater focus on the role of science in keeping us all safe and how the understanding of bioscience and genetics can deliver breakthroughs that can transform our future. Not just in protecting our health from the threats of viral pandemics and antimicrobial resistance (AMR) but across the food supply chain. More than ever, the food industry is reliant on good science; for example to support productivity, to protect animal and human health from disease, to improve crop yields and ultimately to deliver enough safe food to feed an increasingly hungry world.

In this series of articles, FOLIUM Science’s in-house experts reflect on the role that bioscience plays in the food supply chain and draw on their own personal experiences to consider how the future might look.

FOLIUM Science’s Chief Technical Officer, Dr Hadden Graham shares his thoughts on some of the bigger breakthroughs in bioscience.

“Biotechnology has been important for thousands of years. Even as far back as Egyptian times when fermentation was used to preserve food. Selective plant breeding has been carried out for centuries, but the big breakthroughs came when there was a greater understanding of how to speed up the process and how to deliver predictable outcomes based on an understanding of the genetic make-up of an organism”

Genetics sits at the core of much of the science that is applicable in the food supply chain. The improvement in breeding stock amongst poultry producers is a good example

“These breeders aren’t using GM to improve their stock. They are selecting based on performance and using big data to identify and produce the desired genetic traits in the next generation. And it’s not just about performance. Genetic selection will support better animal health and welfare by selecting for leg strength or bone strength for example. We now understand so much more about animal genetics, but we still need to learn more about how to feed the genetics to help control the diseases”

But delivering the breakthrough bioscience and innovation to market has its challenges. Particularly, in Hadden’s view when it comes to consumers.

“Some people think it is the regulatory authorities that present the greatest barrier to bioscience innovation, but a bigger problem can be the way that consumers perceive it. Consumers often fear the unknown and, on the whole, don’t understand science. This isn’t necessarily their fault as science is getting pretty complex and not as easy to understand as it might have been 20 years ago but the degree of consumer resistance to some aspects of bioscience has limited some applications, even though the regulatory authorities have the appropriate systems and processes in place”

With scientific experts in the headlines every day, one outcome of the corona virus pandemic could be a greater trust in science amongst consumers alongside a more intense focus on where our food comes from.

“Governments across the world are now realising the importance of listening to experts. They need the scientists to tell them what to do as there is no other way to deal with the problems we have to face in the world today. This applies to the long-term provision of our food as well as to the combatting of diseases. For consumers, the key question will be around trust. Will science regain the trust of consumers that has eroded in recent years?. At the very least we should expect a shift in attitudes towards those with genuine expertise and experience. It’s an important time for the biotechnology industry; we are on the cusp of finding solutions to some of today’s big health issues including many cancers and diseases. Our CRISPR based Guided Biotics® technology is a part of this”

(Download our technical guide to find out more http://foliumscience.com/our-technology/)

Hadden’s first-hand experience in delivering breakthrough bioscience to market for the food supply chain was demonstrated in the late 1980’s when feed enzymes were first launched by the pioneering feed additive producer, Finnfeeds. Although enzymes had unwittingly been used for centuries in beer and cheese production and had been studied in animal performance trials as far back as the 1920’s it wasn’t until the right market opportunity presented itself that this billion-dollar industry was born.

“ Although the actions of enzymes in animal feeds was understood, the catalyst and commercial breakthrough was the impact that feeding enzymes had on barley fed poultry. Domestically grown barley was significantly cheaper than imported wheat but had historically created problems with litter when fed to birds. The addition of enzymes into the feed transformed this and the rest, as they say is history. This was an example of where good science reacted to the market opportunity and was rapidly developed by commercially astute scientists into a commercial application“

So what lessons can we learn from these reflections?

Firstly, although bioscience has played a role in the production of safe food for centuries, the importance of delivering science-based solutions for the food supply chain has never been greater. Population growth and changing consumer consumption patterns means that efficiency of production will rely on a deep understanding of the drivers of greater productivity. And beyond these ongoing pressures, the current threats to human health posed by AMR or viral pandemics are very real and can only be solved by a commitment to invest in the research and innovation required.

Secondly, we should expect to see science as the hero in our future stories and a return of a world where science trumps politics. Or at least that’s what we should hope for.

And finally, there are enormous commercial opportunities for investors in biotechnology and for science driven organisations that can not only develop products that improve the productivity of food producers and support the production of safe food but that can put the commercial operations in place to move swiftly to market.