Categories
2020

FOLIUM Science launches AQUA Consortium

FOLIUM Science has developed a new partnership with renowned experts in aquaculture health plus leading scientists at Harper Adams University (HAU) to extend the application of its Guided Biotics® technology to the aquaculture industry.

Professor Simon Davies, international expert in fish nutrition and editor-in-chief at International Aquafeed will be working in a collaborative partnership with FOLIUM Science to develop products that help to solve the issues caused by bacterial diseases in fish. He will also join FOLIUM Science’s bench of industrial experts; a group of experienced individuals from across the agri-tech industry who advise and support the development of FOLIUM Science’s technology.

Supporting Professor Davies from HAU will be Dr Tharangani Heath, Senior lecturer in Aquaculture health and Senior research scientist Dr Nilantha Jayasuriya. The team will also be collaborating with Dr Alex Wan of the National University of Ireland, Galway (NUIG) at the prestigious Ryan Institute’s Carna Research Station for feeding trials with salmon.

The new AQUA Consortium will be targeting bacterial pathogens that can cause mortality rates of up to 30% in farmed salmon and trout (source: MSS). Initial focus will be on Aeromonas salmonicida with future work to develop multivalent products for multiple fish pathogens.

FOLIUM Science CEO Ed Fuchs says “The launch of our AQUA Consortium is an important step in our strategic development. The UK Aquaculture industry is valued at more than £550m annually and is growing rapidly. However issues with bacterial pathogens are worldwide so we see huge commercial opportunities for the new products that the AQUA Consortium will develop

Although vaccines currently exist to help manage bacterial pathogens in farmed fish, outbreaks still occur, particularly at times of greater vulnerability such as in early life or when fish are transferred from fresh water to sea water. The emergence of new pathogens has resulted in extensive use of anti-biotics driving the emergence of antimicrobial resistance and concerns across the industry and wider health sector. FOLUM Science’s Guided Biotics® technology applied via the feed, can target specific pathogens at time of increased vulnerability whilst vaccination is given time to provide protective immunity.

Professor Davies says “ This is a great opportunity to contribute our expertise in fish nutrition and aquaculture health to a vibrant and commercially focussed biotechnology business. FOLIUM Science’s Guided Biotics® technology has already proved its efficacy in monogastric agriculture so we look forward to demonstrating the opportunities in aquaculture. Given the opportunities that this represents, we welcome engagement and discussions with potential commercial partners

To find out more about how Guided Biotics® technology works, download our Technical Guide here. http://foliumscience.com/our-technology/

Categories
2020

The Consequences of Intensification

FOLIUM Science’s third article on the role of bioscience in the food supply chain examines the characteristics of today’s global food systems, the consequential pressure placed on public health, the interventions that have been developed and the opportunities for future technology.

We asked FOLIUM Science’s in-house experts to reflect on the role that bioscience plays in the food supply chain and draw on their own personal experiences to consider how the future might look.

FOLIUM Science Chief Scientific Officer, Professor Martin Woodward describes some of the macro challenges within the global food supply chain.

“The first thing we have to recognise is that over the last 75 years, we have moved from largely local production of food to highly intensified production for a global market. We are moving foodstuffs around the world at an unprecedented rate with much of this being consumed by the wealthier developed economies”

This growth in intensification has consequences. Animals and crops are reared and grown in close proximity which increases the ability of diseases to spread.

“The additional impact of these monoculture systems where everything is identical is that if an infection does occur, it will infect the whole crop, flock or herd. Genetic diversity is reduced which can mean an entire production system can be wiped out if a single infection occurs. This has been seen for example with Xylella infections in fruit crops and Vibrio parahaemolyticus in shrimp production in parts of South America. One of the things we need to think about is the genetic diversity of what we are growing. Classic breeding selection and more recently genetic modification is used to generate crops and animals that show greater natural resistance to infections as well as drought resistance in crops for example”

One of the other known outcomes of expanding monoculture systems is their impact on the natural environment and on the reduction in natural ecosystems. Martin reflects on how zoonosis, the transmission of an animal disease to humans, can occur.

“This reduction in natural habitats has had a big impact on how diseases move from wild animal species to domesticated or farmed species and subsequently into man. SARS, MERS, Ebola and the new Corona virus are all examples of viruses that have found new hosts in new species. So, because of these big changes in natural environments, what was once contained in nature is now being exposed to human populations”

So how can these risks be managed and how can science combat the challenges to the food supply chain that they represent? Martin remains positive that there are systems in place that can work.

“Fortunately, there is a well-developed global infrastructure around food safety intelligence. Good data exists on what illnesses are occurring and where they are located. The next level down from the data are the diagnostics and bioinformatic analyses that help to identify what’s out there and the extent of the risk. These systems have matured considerably in recent years with good levels of international collaboration. For example, data is published internationally on notifiable diseases such as Salmonella, with export restrictions in place for countries with a high incidence of Salmonella in poultry.”

Metadata analyses, epidemiology, risk analysis and bioinformatics are an increasingly essential part of food safety, particularly as food supply chains become more complex.

“It is vital to know where in the supply chain an issue such as infection or contamination may exist and where it may be disseminated across the global market. Traceability is key from point of origin all the way through the distribution system, so that once a problem is detected, it can be safely contained.”

But in order to carry out the diagnostics and analysis, Martin is very clear that effective testing regimes also need to be in place.

“It is important that testing can be carried out in real time so that issues can be detected where they exist, not after the event. This becomes even more important as food production systems intensify as there is a greater likelihood of a problem becoming concentrated through a single pipeline. Diagnostic testing pre-production is also required so that problems in the environment can be detected early.”

This leads on to the importance of epidemiology and the way in which this aspect of bioscience supports a safe food supply chain.

“Once we know where the producers are and can detect and diagnose a problem, it is crucial to know how and where it will spread. This is the science of epidemiology. In many parts of the world, chickens and pigs live in and amongst houses, often in the back yard or as part of a small holding. A major concern is that this is where new zoonoses may emerge with for example avian influenza starting in a back yard. It then becomes important to understand the migratory paths that infected birds will take and how the infection could spread. Again, this is often linked to manmade changes in the natural environment and the reducing diversity of landscapes, forcing disease into farmed animals and on to humans”.

The food supply system understands the challenges of food safety and has worked with solutions and interventions for years. One of the most important interventions, in Martin’s view is simple biosecurity.

“Biosecurity is well established, especially in developed countries. There are many procedures in place to prevent the spread of infection through a monoculture of chickens, for example. Foot dips, limiting the number of people on site, concrete floor curtains around the barn, reducing wild bird and rodent entry, cleansing and disinfection regimes are standard measures. Where poultry is housed outside, it is harder to control infection that may be carried by birds flying in. Managing the spread of infection in crops is also harder as it can be wind borne.”

One of the most obvious direct interventions in the farmed animal and poultry population is vaccination. Typically, in the UK every chicken is now vaccinated with at least seven vaccines. But developing vaccines is extremely costly and rarely 100% effective although Martin points to some important recent developments in vaccine technology.

“The emergence of synthetic biology and techniques that can stitch together the relevant components into a vaccine that gives a protective immune response is a real breakthrough in modern science. However, we will need to bring public opinion with us as historically the concept of synthetic biology has encountered resistance with consumers because it is viewed as unnatural. It may take a pandemic to change people’s opinion but it’s likely that they will be shouting from the rooftops in support of a synthetic vaccine if it provides immunity to Covid-19.”

The other much used intervention is the use of antibiotics in farmed animals. Whilst these are used therapeutically to treat disease, they are still used as growth promoters. Fortunately, in many parts of the world, there are an increasing number of countries where their use is restricted to the treatment of infected animals or birds. Consumers, particularly in the US and the Europe are influencing reduced and prudent use driven by the emergence of resistant superbugs that cannot be treated in human infections.

“The concept of No Antibiotics Ever (NAE) is gaining traction amongst consumers although this is having an impact on producer’s profitability. The whole industry is having to bear a loss in productivity. This is driving a need for alternatives to the antibiotics that have in the past been so effective.”

Farmers and producers are therefore in desperate need of alternative interventions to vaccines and antibiotics that maintain the balance of good health in farmed animals and in crops. Martin shares some thoughts on the options currently available.

“Beyond the need for good biosecurity, it then becomes a matter of what can be sprayed on crops or fed to animals. Prebiotics and probiotics are well established as feed additives and whilst they will help support animal health, they are unable to effectively control disease. Bacteriophages, originally explored as an option many decades ago are of interest but they too drive selection of bacteria resistant to being killed by them. To overcome this, an extremely wide diversity of bacteriophages is needed; this limits their practicality. So there is currently a huge search for alternative approaches or technologies that can be an effective support for animal or plant health and reduce the risk of infection. Our Guided Biotics® platform is designed to address this”

(Download our technical guide to find out more http://foliumscience.com/our-technology/)

One of the challenges associated with any new technology designed to tackle infectious disease is how to get it to reach its target. Martin explains why this is important and why this represents an opportunity area for future investment.

“Much of the new biotechnology that is in development across the world is reliant on having an effective targeting and delivery system as part of its application. Many technologies will operate in a small window of opportunity within the target environment so the technology must either be very effective within that window or have a very efficient delivery system. The big opportunity areas for the future are therefore in the biotechnology associated with delivery systems as well as the technology that can selectively remove an unwanted pathogen”.

Martin has given us much to think about. The effects of monoculture food systems and of a worldwide reduction in genetic biodiversity can be seen at a local level in the increased risk of infectious diseases that we are all living with today. However, the global data surveillance and bioinformatic systems that exist will allow for accurate monitoring, risk analysis and modelling such that, in most cases, the appropriate interventions can be put in place.

Beyond biosecurity, interventions include vaccines and antibiotics but the growth in synthetic biology, using pre-existing biological components creates opportunities for new technologies that can be designed to be highly specific and targeted.

To address the systemic challenges of modern agriculture and to continue to produce safe food, the door to new technologies must be opened. Without doubt, bioscience holds the key.

Categories
2020

Embracing Innovation in BioScience

In the second of our series of articles, FOLIUM Science considers some of the big challenges in the food supply chain, how attitudes to bioscience and new technologies differ across the world, how funding of new research needs to be managed and where the investment opportunities in bioscience will be.

We asked FOLIUM Science’s in-house experts to reflect on the role that bioscience plays in the food supply chain and draw on their own personal experiences to consider how the future might look.

FOLIUM Science Chief Development Officer, Dr Simon Warner shares some thoughts on how technological change is adopted.

“The last ten years has seen a very different response to new technology depending on where you are in the world.  The US, China and Brazil have embraced new technology much faster than Europe. The focus in Europe has been more orientated towards biological solutions and pesticide reduction, for example, neither of which are bad options but some of the new potent technologies have not fared so well as a result.”

This could be due to inherent beliefs and behaviours that are ingrained within respective societies, as well as the different rates of agricultural and economic growth across the different regions. But it will also be a function of the perceived future and the skills that the next generation will require.

Simon believes that education in the sciences may well be one of the driving factors that impacts the level of adoption of new technologies.

“Developing countries are trying really hard to ensure the next generation benefits from as good a scientific education as possible, whereas in Europe we value other things. The UK in particular is more focussed on finance and other services, and core agriculture in Europe is very small with only a few farmers per head of population. This means that many European consumers have lost touch with agriculture so, although we have seen some great new technologies being developed, their deployment and public acceptance is different around the world”

Genetically modified organisms (GMOs) are an example of this. First developed in the 1970s and developed through second generation technology in subsequent decades, today’s synthetic biology techniques are taking it through a third evolution with the advent of CRISPR technology.

This type of bioscience has the ability to quicken the pace of agricultural growth. The modern strains of wheat and barley were developed using selective breeding of the desired genetic traits; synthetic biology, such as CRISPR can play an important role in this process.

In previous roles, Simon’s experience has been with viral diseases such as Malaria, Zika and Dengue fever.

“Malaria still kills up to three million people a year, with children disproportionately affected. These diseases are mosquito-based and as yet there has been no vaccine developed that is really effective, so the only current route is to manage the insect population”

Simon believes that lessons can be learnt from the way in which these projects were funded. Much of the work on mosquito borne diseases was funded by the Bill and Melinda Gates Foundation, but the Covid-19 pandemic poses a question about whether we will see greater collaboration between scientists or a more siloed, competitive approach.

“Innovate UK has announced a £20m Covid-19-related competition for UK businesses with maximum grants of £50,000 per business. This encourages competition but not collaboration. It is therefore up for debate whether many small laboratories with small amounts of money will deliver a better solution than a bigger collaborative consortium with say a minimum of £1m. Different countries will take different approaches, but it would be good to see the scientific community working together on this challenge”

When it comes to protecting consumers from ongoing food safety risks, it is a matter of making sure that the public do not take food safety for granted and realise that without good science, this will become even more of an issue.

“We could say that banning the use of antibiotics as a growth promoter for livestock production is a sensible policy and to reserve the  use of antibiotics only as veterinary medicines, but the consequences of this could also inadvertently cause contamination in the food supply chain with pathogens and unwanted bacteria such as Salmonella. Therefore by reducing the use of antibiotics to address the issue of antimicrobial resistance, other risks can occur. So we need alternatives that will support animal wellbeing and reduce the risk of infection. Our Guided Biotics® platform is designed to address this”

(Download our technical guide to find out more http://foliumscience.com/our-technology/)

Simon is clear that science will play a big part in a sustainable and secure food supply. With an ever-growing world population, there are some big risks and challenges ahead.

“We all forget, as complacent Europeans, that the world will not have enough food by 2030, so there is a big risk staring us in the face. There won’t be enough food or enough animal protein. This is because of productivity gaps and behavioural changes. China is demanding more meat and the consumption of meat in the western world will not be sustainable as crop acreage and water supply become limiting factors. Science has a role to play in supporting increased productivity from the existing agricultural acreage to combat the issues caused by climate change, changes in rainfall patterns and water scarcity”.

Biotechnology has solved issues of food preservation before.  The use of fermented foods and drinks to combat dirty food and water by developing beers and breads is an example of how biotechnology has always played a role in the safety of our food.

So, in the long term what does this all mean for investors and where should they look to support biotechnology in the future? Simon is clear that technology to drive productivity and efficiency will be key.

“In the long term, the problems that face us will be how to increase crop yield in a world where fewer new crop protection products  are being registered . Finding ways to protect plants and crops is therefore becoming more challenging. The opportunities lie in technology that can enhance productivity and efficiency in a world where resources are becoming increasingly stretched. And, in recognition of the differing public attitudes towards new technology, biological solutions can only improve the rate at which it will be adopted”.

To conclude, new biotechnologies for the food supply chain are vital but the rate of adoption will depend in part on how local populations perceive the science. Implementation is more likely in countries that have historically been more receptive to new technology such as the US, Asia and South America or where a science-based decision-making process is regarded as important.

The optimisation of funding models for research and development will play a part in the success of new initiatives, including finding treatments for global pandemics. It remains to be seen whether a competition-driven or collaboration within larger consortia approaches are more effective.

Finally, the opportunities for investment in biotechnology will be in technologies that deliver production efficiencies, higher yields and that can protect public health from unwanted pathogens.

Categories
2020

BioScience Keeps Us Safe

Never has there been a greater focus on the role of science in keeping us all safe and how the understanding of bioscience and genetics can deliver breakthroughs that can transform our future. Not just in protecting our health from the threats of viral pandemics and antimicrobial resistance (AMR) but across the food supply chain. More than ever, the food industry is reliant on good science; for example to support productivity, to protect animal and human health from disease, to improve crop yields and ultimately to deliver enough safe food to feed an increasingly hungry world.

In this series of articles, FOLIUM Science’s in-house experts reflect on the role that bioscience plays in the food supply chain and draw on their own personal experiences to consider how the future might look.

FOLIUM Science’s Chief Technical Officer, Dr Hadden Graham shares his thoughts on some of the bigger breakthroughs in bioscience.

“Biotechnology has been important for thousands of years. Even as far back as Egyptian times when fermentation was used to preserve food. Selective plant breeding has been carried out for centuries, but the big breakthroughs came when there was a greater understanding of how to speed up the process and how to deliver predictable outcomes based on an understanding of the genetic make-up of an organism”

Genetics sits at the core of much of the science that is applicable in the food supply chain. The improvement in breeding stock amongst poultry producers is a good example

“These breeders aren’t using GM to improve their stock. They are selecting based on performance and using big data to identify and produce the desired genetic traits in the next generation. And it’s not just about performance. Genetic selection will support better animal health and welfare by selecting for leg strength or bone strength for example. We now understand so much more about animal genetics, but we still need to learn more about how to feed the genetics to help control the diseases”

But delivering the breakthrough bioscience and innovation to market has its challenges. Particularly, in Hadden’s view when it comes to consumers.

“Some people think it is the regulatory authorities that present the greatest barrier to bioscience innovation, but a bigger problem can be the way that consumers perceive it. Consumers often fear the unknown and, on the whole, don’t understand science. This isn’t necessarily their fault as science is getting pretty complex and not as easy to understand as it might have been 20 years ago but the degree of consumer resistance to some aspects of bioscience has limited some applications, even though the regulatory authorities have the appropriate systems and processes in place”

With scientific experts in the headlines every day, one outcome of the corona virus pandemic could be a greater trust in science amongst consumers alongside a more intense focus on where our food comes from.

“Governments across the world are now realising the importance of listening to experts. They need the scientists to tell them what to do as there is no other way to deal with the problems we have to face in the world today. This applies to the long-term provision of our food as well as to the combatting of diseases. For consumers, the key question will be around trust. Will science regain the trust of consumers that has eroded in recent years?. At the very least we should expect a shift in attitudes towards those with genuine expertise and experience. It’s an important time for the biotechnology industry; we are on the cusp of finding solutions to some of today’s big health issues including many cancers and diseases. Our CRISPR based Guided Biotics® technology is a part of this”

(Download our technical guide to find out more http://foliumscience.com/our-technology/)

Hadden’s first-hand experience in delivering breakthrough bioscience to market for the food supply chain was demonstrated in the late 1980’s when feed enzymes were first launched by the pioneering feed additive producer, Finnfeeds. Although enzymes had unwittingly been used for centuries in beer and cheese production and had been studied in animal performance trials as far back as the 1920’s it wasn’t until the right market opportunity presented itself that this billion-dollar industry was born.

“ Although the actions of enzymes in animal feeds was understood, the catalyst and commercial breakthrough was the impact that feeding enzymes had on barley fed poultry. Domestically grown barley was significantly cheaper than imported wheat but had historically created problems with litter when fed to birds. The addition of enzymes into the feed transformed this and the rest, as they say is history. This was an example of where good science reacted to the market opportunity and was rapidly developed by commercially astute scientists into a commercial application“

So what lessons can we learn from these reflections?

Firstly, although bioscience has played a role in the production of safe food for centuries, the importance of delivering science-based solutions for the food supply chain has never been greater. Population growth and changing consumer consumption patterns means that efficiency of production will rely on a deep understanding of the drivers of greater productivity. And beyond these ongoing pressures, the current threats to human health posed by AMR or viral pandemics are very real and can only be solved by a commitment to invest in the research and innovation required.

Secondly, we should expect to see science as the hero in our future stories and a return of a world where science trumps politics. Or at least that’s what we should hope for.

And finally, there are enormous commercial opportunities for investors in biotechnology and for science driven organisations that can not only develop products that improve the productivity of food producers and support the production of safe food but that can put the commercial operations in place to move swiftly to market.

Categories
2020

FOLIUM Science at APSS 2020

FOLIUM Science CTO, Dr Hadden Graham attended APSS 2020 to present a paper on “Selective removal of Salmonella from broilers using a novel technology

…………..

TRISTAN COGAN, HOLGER KNEUPER, HADDEN GRAHAM and MARTIN WOODWARD present a trial for a new CRISPR-based patented technology introduced into a vector Escherichia coli probiotic designed to selectively remove all Salmonella serovars from the bird gut.

Introduction

    Over the past few decades the meat, egg and milk sectors have faced the need to reduce the routine use of antibiotics in animal production, and the high incidence of food poisoning associated with animal product consumption. Approximately 130,000 tonnes of antibiotics were used in 2013 worldwide, with 75% of this in animals. Up to 90% of these antibiotics can be excreted into the environment via urine and feces, and approximately 400 resistance markers against 25 antibiotics can be found in chick caecal bacteria. Globally, around 700,000 human deaths per annum are attributed to antibiotic resistance and this is predicted by the FAO to increase to 10 million by 2050. With rising concern about the development of antibiotic resistance in human health, regulators, consumers and retailers have led the drive to reduce the sub-therapeutic use of antibiotics in animal feeds to zero. Endemic disease is re-emerging, adding costs to animal production systems and driving the need for alternative non-antibiotic interventions.

Food poisoning continues to be a problem across the world, with salmonellosis cases now increasing in many countries. Non-typhoidal salmonellosis is reported to cause over one million infections, 19,000 hospitalizations and over 400 deaths annually in the US, with some Salmonella serovars in food showing antibiotic resistance. Although salmonellosis incidents are traditionally relatively low in Australia, recent egg-associated outbreaks have brought this back to the attention of the regulators and consumers.

It is now possible to cause a targeted bacterium to self-destruct through the use of CRISPR, the biological sequences that make up the bacterial immune system. This technology is extremely precise, such that it can target a specific bacterium or a defined range of bacteria. This means that, unlike many antibiotics, it can be used to remove only the unwanted bacteria in the animal gut microbiome and leave beneficial gut flora unchanged, potentially enhancing the well-being of the animal. One way to induce bacteria in the animal gut to self-destruct is to introduce a suitable plasmid into the target organism(s) through conjugation via a probiotic included in the feed or drinking water. The current trial looks at the ability of this technology, named Guided Biotics, to reduce Salmonella colonization in challenged broilers.

Method

A non-pathogenic Escherichia coli strain was used as the vector in this trial, and was loaded with a plasmid including a CAS sequence and 3 target sequences specific to all Salmonella serovars (Guided Biotics). Ross 308 as-hatched birds (165) were obtained on day of hatch and housed under controlled biosecure conditions, with access to water and standard commercial rations ad libitum.Birds were dosed continually from day 1 with either:

  1. No addition to water (45 birds)
  2. Unmodified E. coli vector at 108 cfu/mL drinking water (45 birds)
  3. Anti-Salmonella Guided Bioticsat 108 cfu/mL drinking water (45 birds)

In parallel, a group of 30 birds was dosed orally with 0.5 ml 105 CFU/mL Salmonella Enteritidis strain FS26 on day 1. Birds were checked for Salmonella colonization at day 3 by cloacal swab (ISO 6579-1:2017). On day 5, three verified Salmonella-colonized birds (seeder birds, with >105 CFU/g in swabs) were marked and added to each of the test groups.

Fifteen non-seeder birds from each group were euthanazed on day 12 (7 days post-mixing with seeder birds) and caecal contents were counted for Salmonella using both direct and enhanced methods. Caecal samples were serially diluted in PBS before plating onto XLD agar for direct counts, whilst for enhanced counts the samples were first incubated in Selenite Cystine broth for 18 hrs at 41oC before plating and counting (ISO 6579-1:2017). For the purpose of data transformation, samples negative in either method were allocated a count of 1 CFU/g, while those negative in direct counts but positive in the enhanced method were allocated 500 CFU/g. Body weights of the remaining birds were monitored at day 42. Counts and weights were log transformed and statistical analysis conducted using GraphPad Prism. Data were assessed for normality of distribution using a D’Agostino and Pearson omnibus normality test and non-normal were analysed using a Kruskall-Wallis test with Dunn’s multiple comparison test post hoc. Differences were analyzed using Fisher’s exact test.

Results

All birds in the seeder group showed cloacal Salmonella counts of >105 CFU/g by day 3. By day 12 (7 days post introduction of seeder birds to test groups) all birds in the Control and E. coli vector-only groups were positive using the enhanced counts method, exhibiting caecal counts of 500-4,000,000 CFU/g (Table 1). Twenty two of these 30 birds were also positive with direct counts. However, when the anti-Salmonella Guided Biotics was added to the drinking water, Salmonella was not detected in any birds with the direct method, and only 8 of the 15 birds tested were positive with enhanced counts. The Guided Bioticstreatment reduced (p < 0.001) mean Salmonella counts by approximately log-3 (from log 4.12 to log 1.26, equivalent to 14,200 CFU/g to 18 CFU/g) and also improved 42-day liveweight by 15% (p = 0.02; Figure 1).

Table 1: Influence of the E. coli vector alone or Guided Biotics with an anti-Salmonella plasmid on caecal Salmonella counts (log10 CFU/g, enhanced counts method) in 12-day old Salmonella-challenged broilers.

  Control E. coli vector only Guided Biotics
Mean Salmonella count (log10 CFU/g) 4.12a 4.74a 1.26b
Median Salmonella count (log10 CFU/g) 3.30 4.95 ND
Maximum Salmonella count (log10 CFU/g) 6.60 6.60 2.70
Minimum Salmonella counts (log10 CFU/g) 2.70 2.70 ND

Figure 1: Influence of Guided Biotics on bird liveweight at 42 days of age.

Discussion

The challenge method employed in this study is consistent with that often use in Salmonella vaccine tests and may be regarded as severe. All seeder birds were infected when introduced into the test pens, and the Salmonella shed to in-contact birds would be expected to be highly infective. This was confirmed by the universally high caecal counts in all Control birds 7 days after seeded-bird introduction. Conversely, the Guided Biotics, delivered by conjugation in the digestive tract, was able to stop Salmonella colonization in 8 out of 15 (53%) of the test birds. The average Salmonella count in caecal digesta was also reduced by approximately log3 (thousand-fold) and the maximum Salmonella count lowered from 4 million CFU/g in Control birds to 500 CFU/g in Guided Biotics treated. The 15% increase in liveweight of birds fed the Guided Biotics relative to the Control birds further indicates the severity of the Salmonella challenge employed in this trial. The lack of any effect of the E. coli vector on colonization confirms that the Guided Biotics plasmid was essential for Salmonella reduction.

This initial trial establishes the capability of Guided Biotics technology to specifically remove unwanted bacteria, in this case a single Salmonella serovar. The tested Guided Biotics is designed to target all known 2,400 Salmonella serovars, and laboratory trials have established efficacy across the main serovars involved in human food poisoning. Ongoing laboratory tests have also indicated that solutions for other unwanted bacteria, such as Clostridium perfringens and Avian Pathogenic E. coli, are feasible. Furthermore, because the design of the targeting is specific, tests have confirmed that off-target killing of desirable or commensal bacteria can be avoided.

Conclusion

It is clear that this Guided Biotics technology has the potential to make a substantial contribution to the replacement of antibiotics in poultry production, reduce zoonosis incidents and maintain bird performance in antibiotic-free diets.

*Tristian Cogan (tristan.cogan@bristol.ac.uk) is with the Veterinary School, University of Bristol, UK. Holger Kneuper (hk@foliumscience.net), Hadden Graham (hg@foliumscience.net) and Martin Woodward (mjw@foliumscience.net) are all with Folium Science. References are available on request to Hadden Graham. This paper was presented at the 2020 Australian Poultry Science Symposium.

Categories
2020

FOLIUM Science extends capability to destroy plant pathogens

In partnership with Jake Malone’s Group at the John Innes Centre (JIC), FOLIUM Science has been developing its patented Guided Biotics® technology to provide solutions to the issues caused by bacterial blight in many staple food crops.

Using FOLIUM Science’s Guided Biotics® technology, the aim is to disrupt and prevent  bacteria-mediated losses in crops and boost the overall performance by promoting a productive microbiome.

Funded by an Innovate UK award in Q1 2019, the project is focussed on pathogens such as Xanthomonas and Xylella. Xanthomonas blight is a significant challenge to sustainable food production, affecting more than 400 species of plants. Some species of Xylella create issues in crop production and quality due to their widespread occurrence and resilience to traditional crop protection products.

New developments in the Guided Biotics® technology has resulted in greater capability to make and deliver product candidates and the opportunity for a wider range of Guided Biotics® that will have the ability to control important microbial pathogens.

During the project, FOLIUM Science purchased unencumbered worldwide  rights to several unique and proprietary strains of epiphytes; organisms recognised for their ability to protect some plant species from fungal infection. The integration of the naturally protective attributes of these strains into FOLIUM Science’s Guided Biotics® platform will accelerate the development of products that will  be widely used to combat the devastating losses to crop yields in world food crops caused by bacterial blight.

The commercial potential for the Guided Biotics® products has been recognised by additional funding from Innovate UK. This enables the JIC and FOLIUM Science project team to carry out trials of these product candidates and generate data to demonstrate efficacy in specific crops.

Project leader and Chief Development Officer at FOLIUM Science, Dr Simon Warner says “Our Guided Biotics® technology has the potential to change the way that bacterial disease in crops is treated. The fact that the project has made such good progress is reflected in the ability to progress to trials with a view to generating the first sets of data in the first half of 2021”

For more information on FOLIUM Science’s Guided Biotics® technology, download the Technical Guide here http://foliumscience.com/our-technology/

Categories
2020

Artigo 3. Professor Martin Woodward

O terceiro artigo da FOLIUM Science é sobre o papel da biociência na cadeia de suprimento de alimentos e discorre sobre as características dos sistemas alimentares globais de hoje, a consequente pressão exercida sobre a saúde pública, as intervenções que foram desenvolvidas e as oportunidades para as futuras tecnologias.

Pedimos aos especialistas da FOLIUM Science que refletissem sobre o papel da biociência na cadeia de suprimento de alimentos e aproveitassem suas experiências pessoais para imaginar como seria o futuro.

O Diretor Científico da FOLIUM Science, professor Martin Woodward, descreve alguns dos desafios gerais enfrentados pela cadeia global de suprimentos alimentares.

“O primeiro fato que precisamos reconhecer é que, nos últimos 75 anos, passamos da produção local de alimentos para uma produção altamente intensificada para um mercado global. Estamos transportando alimentos ao redor do mundo a uma taxa sem precedentes, sendo grande parte para o consumo pelas economias mais ricas e desenvolvidas”

Esse crescimento na intensificação tem consequências. Animais e lavouras são criados e cultivados com grande proximidade, o que aumenta a capacidade de propagação de doenças.

“O impacto adicional desses sistemas de monocultura, onde tudo é idêntico, é que se ocorrer uma infecção, ela afetará toda a lavoura, rebanho ou criadouro. A diversidade genética é reduzida, o que pode significar a eliminação de todo um sistema de produção se ocorrer uma única infecção. Isso foi observado, por exemplo, com infecções por Xylella em culturas de frutas e Vibrio parahaemolyticus na produção de camarão em partes da América do Sul. Uma das coisas em que precisamos pensar é na diversidade genética do que estamos cultivando. O sistema clássico de seleção para o melhoramento genético e, mais recentemente, a modificação genética, são usadas para gerar lavouras e animais que mostram maior resistência natural a infecções, bem como resistência à seca nas culturas, por exemplo”.

Um dos outros resultados conhecidos da expansão dos sistemas de monocultura é o impacto no ambiente natural e na redução dos ecossistemas naturais. Martin reflete sobre como a zoonose, a transmissão de uma doença animal ao homem, pode ocorrer.

“Essa redução nos habitats naturais teve um grande impacto na maneira como as doenças passam de espécies de animais selvagens para espécies domesticadas ou cultivadas, e posteriormente para o homem. SARS, MERS, Ebola e o novo coronavírus são exemplos de vírus que encontraram novos hospedeiros em novas espécies. Então, devido a essas grandes mudanças nos ambientes naturais, o que antes estava contido na natureza agora está sendo exposto às populações humanas”.

Então, como esses riscos podem ser gerenciados e como a ciência pode enfrentar os desafios da cadeia de suprimentos de alimentos que eles representam? Martin permanece otimista de que existem sistemas que podem funcionar.

“Felizmente, existe uma infraestrutura global bem desenvolvida em torno da inteligência de segurança alimentar. Existem bons dados sobre quais doenças estão ocorrendo e onde elas estão localizadas. Logo após o conhecimento dos dados estão os diagnósticos e as análises de bioinformática que ajudam a identificar o que está ocorrendo e qual a extensão do risco. Esses sistemas foram aprimorados consideravelmente nos últimos anos, com bons níveis de colaboração internacional. Por exemplo, dados são publicados internacionalmente sobre doenças notificáveis, como a Salmonella, com restrições de exportação para países com alta incidência de Salmonella em aves de corte.”

Análises de metadados, epidemiologia, análise de risco e bioinformática são partes cada vez mais essenciais da segurança alimentar, principalmente à medida em que as cadeias de suprimento de alimentos se tornam mais complexas.

“É vital saber em que ponto cadeia de suprimentos poderá ocorrer problemas como infecção ou contaminação, e por onde pode ser disseminado pelo mercado global. A rastreabilidade é fundamental desde o ponto de origem até o sistema de distribuição para que, uma vez detectado um problema, ele possa ser contido com segurança.”

Mas, para realizar o diagnóstico e a análise, Martin está convicto de que também é necessário que existam programas de teste eficazes.

“É importante que os testes possam ser realizados em tempo real, para que os problemas possam ser detectados no local de ocorrência, e não após o evento. Isso se torna ainda mais importante à medida em que os sistemas de produção de alimentos se intensificam, pois há uma maior probabilidade de um problema se concentrar em um mesmo ponto. Testes de diagnóstico em pré-produção são também necessários para que problemas ambientais possam ser detectados precocemente.”

Isso reforça a importância da epidemiologia e da maneira com que este aspecto da biociência contribuiu para uma cadeia de suprimento de alimentos segura.

“Uma vez sabendo onde estão os produtores e tendo a capacidade de detectar e diagnosticar um problema, é crucial saber como e onde ele se espalhará. Esta é a ciência da epidemiologia. Em muitas partes do mundo, galinhas e porcos vivem dentro e entre as casas, geralmente no quintal ou como parte de uma pequena propriedade. Uma grande preocupação é que são nesses locais que as novas zoonoses podem surgir, por exemplo, com a gripe aviária começando em um quintal. Torna-se importante entender os caminhos migratórios por onde as aves infectadas seguirão e como a infecção pode se espalhar. Mais uma vez, isso geralmente está ligado às mudanças feitas pelo homem no ambiente natural e à redução da diversidade de ambientes naturais, levando doenças para os animais de criação e aos seres humanos”.

O sistema de suprimento de alimentos tem, por anos, analisado os desafios à segurança alimentar e trabalhado com soluções e intervenções. Uma das intervenções mais importantes, na visão de Martin, é simplesmente a biossegurança.

“A biossegurança está bem estabelecida, especialmente nos países desenvolvidos. Existem muitos procedimentos para impedir a propagação de infecções através de uma monocultura de frangos e galinhas, por exemplo. Existem medidas padrões a serem adotadas, como pedilúvios, limitação do número de pessoas nos locais, pisos de concreto ao redor dos barracões, controle de roedores e pombos, programas de limpeza e desinfecção, entre outras. Nos casos de aves domésticas alojadas ao ar livre, é mais difícil controlar a infecção devido ao seu transporte por meio do voo. O gerenciamento da propagação da infecção nas lavouras também é mais difícil, pois esta pode ser transmitida pelo vento.”

Uma das intervenções diretas mais óbvias na criação de animais e aves é a vacinação. Normalmente, no Reino Unido, todos os frangos têm recebido pelo menos sete vacinas. Mas o desenvolvimento de vacinas é extremamente caro e raramente com eficácia de 100% , embora Martin aponte para alguns desenvolvimentos recentes importantes na tecnologia de vacinas.

“O surgimento das novas tecnologias e das técnicas que podem agrupar os componentes relevantes em uma vacina para uma resposta imune protetora é um verdadeiro avanço na ciência moderna. No entanto, precisaremos trazer a opinião pública para o nosso lado, pois historicamente o conceito de biologia sintética tem encontrado resistência entre os consumidores porque é visto como algo não natural. Poderá ser necessária uma pandemia para mudar a opinião das pessoas, mas é provável que elas venham a apoiar uma vacina sintética se ela oferecer imunidade ao Covid-19 “.

A outra intervenção muito utilizada é o uso de antibióticos em animais de criação. Embora sejam utilizados terapeuticamente para tratar doenças, ainda são usados ​​como promotores de crescimento. Felizmente, em muitas partes do mundo, há um número crescente de países onde seu uso é restrito ao tratamento de animais ou aves infectadas. Os consumidores, principalmente nos Estados Unidos e na Europa, estão exigindo a redução de uso e o uso consciente dos antibióticos, influenciados pelo surgimento de superbactérias resistentes que não podem ser combatidas em infecções humanas.

“O conceito de Sempre Sem Antibióticos (SSE) está ganhando força entre os consumidores, embora isso tenha um impacto na lucratividade do produtor. Toda a indústria está tendo de suportar uma perda de produtividade. Isso está levando à necessidade de alternativas aos antibióticos que no passado foram tão eficazes.”

Portanto, agricultores e criadores precisam desesperadamente de soluções alternativas às vacinas e antibióticos para a manutenção do equilíbrio da boa saúde nos animais de criação e das lavouras. Martin compartilha algumas reflexões sobre as opções atualmente disponíveis.

“Além da necessidade da boa biossegurança, outra questão é o que pode e o que não pode ser pulverizado nas lavouras ou fornecido para a alimentado aos animais. Os prebióticos e probióticos estão bem estabelecidos como aditivos para a alimentação animal e, embora ajudem a garantir a saúde dos animais, são incapazes de controlar efetivamente as doenças. Os bacteriófagos, incialmente estudados como uma opção há muitas décadas, são interessantes, mas também levam à seleção de bactérias resistentes. Para superar isso, é necessária uma diversidade extremamente ampla de bacteriófagos, o que limita sua praticabilidade. Existe, atualmente, uma grande procura por abordagens ou tecnologias alternativas que possam contribuir de modo eficaz para a saúde animal ou vegetal e reduzir o risco de infecções. Nossa plataforma Guided Biotics® foi projetada para resolver isso”.

(Baixe nosso guia técnico para saber mais em http://foliumscience.com/our-technology/)

Um dos desafios associados a qualquer nova tecnologia destinada a combater doenças infecciosas é como fazer com que ela atinja seu objetivo. Martin explica por que isso é importante e por que isso representa uma área de oportunidade para investimentos futuros.

“Grande parte das novas biotecnologias em desenvolvimento em todo o mundo depende de ter um sistema eficaz de segmentação e entrega como parte de sua aplicação. Muitas tecnologias operam em uma pequena janela de oportunidade dentro do ambiente a que se destinam, portanto, a tecnologia deve ser muito eficaz dentro dessa janela ou ter um sistema de entrega muito eficiente. As grandes áreas de oportunidades para o futuro estão, portanto, na biotecnologia associada aos sistemas de entrega, bem como na tecnologia que pode remover seletivamente um patógeno indesejado”.

Martin nos deu muito em que pensar. Os efeitos da monocultura nos sistemas alimentares e da redução mundial da biodiversidade genética podem ser vistos, em nível local, por meio do aumento do risco de doenças infecciosas com as quais todos estamos vivendo hoje. No entanto, a vigilância global de dados e os sistemas de bioinformática existentes permitirão o monitoramento, a análise de risco e precisas análises de modelagem, de modo que, na maioria dos casos, as intervenções apropriadas possam ser implementadas.

Além da biossegurança, as intervenções incluem as vacinas e antibióticos, mas o crescimento da biologia sintética, usando componentes biológicos preexistentes, cria oportunidades para novas tecnologias que podem ser projetadas para serem altamente específicas e direcionadas.

Para enfrentar os desafios sistêmicos da agricultura moderna e continuar produzindo alimentos seguros, é preciso abrir a porta para novas tecnologias. Sem dúvida, a biociência possui a chave.

Categories
2020

Artigo 2. Dr. Simon Warner

No segundo artigo de nossa série, a FOLIUM Science discute alguns dos grandes desafios da cadeia de suprimento de alimentos, como as atitudes em relação à biociência e às novas tecnologias diferem em todo o mundo, como o financiamento de novas pesquisas precisa ser gerenciado e onde estarão as oportunidades de investimento em biociência.

Pedimos aos especialistas da FOLIUM Science que refletissem sobre o papel da biociência na cadeia de suprimento de alimentos e aproveitassem suas experiências pessoais para imaginar como seria o futuro.

O Diretor de Desenvolvimento de Ciências da FOLIUM, Dr. Simon Warner, compartilha algumas ideias sobre como a adoção das mudanças tecnológicas.

“Nos últimos dez anos têm sido observadas diferentes resposta às novas tecnologias, dependendo de onde você está no mundo. EUA, China e Brasil adotaram novas tecnologias muito mais rapidamente que a Europa. O foco na Europa tem sido mais orientado para soluções biológicas e redução de pesticidas, por exemplo, nenhuma das quais são más opções, mas, como resultado, algumas das novas e poderosas tecnologias não se saíram tão bem. ”

Isso pode ser atribuído às crenças e comportamentos inerentes, que estão enraizados nas respectivas sociedades, bem como às diferentes taxas de crescimento agrícola e econômico nas diferentes regiões. Mas também consequência da percepção de futuro e das habilidades que a próxima geração exigirá.

Simon acredita que a educação em ciências pode ser um dos fatores que influenciam o nível de adoção de novas tecnologias.

“Os países em desenvolvimento estão se esforçando para garantir que a próxima geração se beneficie o máximo possível da educação científica, enquanto na Europa valorizamos outras coisas. O Reino Unido, em particular, está mais focado em finanças e outros serviços, e o foco em agricultura, na Europa, é muito pequeno, com um pequeno número de agricultores em proporção ao tamanho de sua população. Isso significa que muitos consumidores europeus perderam o contato com a agricultura, de forma que embora tenhamos observado o desenvolvimento de algumas excelentes novas tecnologias, sua implantação e aceitação pública são diferentes em todo o mundo”.

Organismos geneticamente modificados (OGM) são um exemplo disso. Desenvolvidos pela primeira vez na década de 1970 e aprimorados por meio de tecnologias de segunda geração nas décadas subsequentes, as técnicas de biologia sintética de hoje estão passando por uma terceira onda de evolução com o advento da tecnologia CRISPR.

Esse tipo de biociência tem a capacidade de acelerar o ritmo do crescimento agrícola. As linhagens modernas de trigo e cevada foram desenvolvidas usando técnicas de seleção de plantas com as características genéticas desejadas. Neste contexto, a biologia sintética, como o CRISPR, pode desempenhar um papel importante nesse processo.

Em funções anteriores, Simon adquiriu experiência com doenças virais, como malária, Zika e dengue.

“A malária ainda mata até três milhões de pessoas por ano, sendo as crianças desproporcionalmente afetadas. Essas doenças são transmitidas por mosquitos e ainda não foi desenvolvida uma vacina que seja realmente eficaz, portanto, a única alternativa atual é gerenciar a população de insetos ”

Simon acredita que as lições podem ser aprendidas com a maneira como esses projetos foram financiados. Grande parte do trabalho sobre doenças transmitidas por mosquitos foi financiada pela Fundação Bill e Melinda Gates, mas a pandemia de Covid-19 coloca uma questão sobre se veremos uma maior colaboração entre cientistas ou se ocorrerá uma abordagem competitiva e mais isolada.

“A Innovate UK anunciou uma concorrência de 20 milhões de Libras para ações contra o Covid-19 para empresas do Reino Unido, com doações máximas de 50 mil Libras por empresa. Isso incentiva a competição, mas não a colaboração. Portanto, está em debate se muitos laboratórios de pequeno porte com pequenas quantias de dinheiro oferecerão uma solução melhor do que um consórcio colaborativo maior, com fundos mínimos de 1 milhão de Libras. Diferentes países adotam abordagens diferentes, mas seria bom ver a comunidade científica trabalhando junta nesse desafio”.

Quando se trata de proteger os consumidores dos riscos contínuos à segurança alimentar, é imperativo garantir que o público não tome como garantida a segurança alimentar e que se perceba que, sem uma boa ciência, isso se tornará um real problema.

“Poderíamos dizer que proibir o uso de antibióticos como promotores de crescimento para a produção animal é uma política sensata, reservando o uso de antibióticos apenas como medicamentos veterinários, mas as consequências disso também podem inadvertidamente causar contaminação na cadeia de suprimento de alimentos com patógenos e bactérias indesejadas, como a Salmonella. Portanto, a redução do uso de antibióticos para enfrentar da questão da resistência bacteriana e pode levar a outros riscos. Portanto, precisamos de alternativas que apoiem o bem-estar animal e que reduzam o risco de infecções. Nossa plataforma Guided Biotics® foi projetada para resolver isso”.

(Baixe nosso Guia Técnico para saber mais em http://foliumscience.com/our-technology/).

Simon tem convicção de que a ciência terá um papel importante em um suprimento de alimentos sustentável e seguro. Com uma população mundial cada vez maior, enfrentaremos grandes riscos e desafios pela frente.

“Todos nós esquecemos, como europeus complacentes, que o mundo não terá comida suficiente a partir de 2030, então há um grande risco a enfrentar. Não haverá comida suficiente ou proteína animal suficiente. Isso ocorre devido a produtividade insuficiente e às mudanças comportamentais. A China está demandando mais carne e o consumo de carne no mundo ocidental não será sustentável, pois a área cultivada e a disponibilidade de água se tornam fatores limitantes. A ciência tem um papel a desempenhar na promoção do aumento da produtividade das áreas agrícolas existentes para combater os problemas causados ​​pelas mudanças climáticas, mudanças nos padrões de chuva e pela escassez de água”.

A biotecnologia já resolveu, há muito tempo, as questões de preservação de alimentos. O uso de alimentos e bebidas fermentados para tornar seguros os alimentos e água, assim como o desenvolvendo de cervejas e pães, são exemplos de como a biotecnologia tem sempre desempenhado um importante papel na segurança de nossos alimentos.

Então, a longo prazo, o que significa tudo isso para os investidores e como eles apoiam a biotecnologia no futuro? Simon acredita que o uso da tecnologia para impulsionar a eficiência e a produtividade será fundamental.

“A longo prazo, os problemas que enfrentaremos serão relacionados a como aumentar a produtividade das lavouras em um mundo onde cada vez menos novos defensivos agrícolas vem sendo registrados. Encontrar maneiras de proteger as plantas e as lavouras está, portanto, se tornando mais desafiador. As oportunidades estão na tecnologia que pode aumentar a produtividade e a eficiência em um mundo onde os recursos estão se tornando cada vez mais escassos. E, considerando as diferentes atitudes do público frente às novas tecnologias, é fundamental que as soluções biológicas tragam apenas a melhoria dos indicadores para os quais elas serão adotadas”.

Para concluir, novas biotecnologias para a cadeia de suprimento de alimentos são vitais, mas a taxa de adoção dependerá em parte de como as populações locais percebem a ciência. A implementação é mais provável em países que historicamente têm sido mais receptivos às novas tecnologias, como Estados Unidos, Ásia e América do Sul ou onde o processo de tomada de decisões com base em ciência é considerado importante.

A otimização dos modelos de financiamento para pesquisa e desenvolvimento contribuirá para o sucesso de novas iniciativas, incluindo a busca de tratamentos para as pandemias globais. Resta ver qual alternativa se mostrará mais eficaz: uma colaboração orientada à concorrência ou  abordagens de consórcios maiores.

Finalmente, as oportunidades de investimento em biotecnologia estarão em tecnologias que proporcionam eficiência de produção, maiores produtividades e capazes de proteger a saúde pública de patógenos indesejados.

Categories
2020

Artigo 1. Dr Hadden Graham

Nunca houve tanto foco no papel da ciência em manter todos nós seguros e em como o entendimento da biociência e da genética pode oferecer avanços que possam transformar nosso futuro. Foco, não apenas para proteger nossa saúde das ameaças de pandemias virais e das bactérias resistentes, mas em toda a cadeia de suprimento de alimentos. Mais do que nunca, a indústria de alimentos depende da boa ciência, por exemplo, para apoiar a produtividade, proteger a saúde animal e humana contra as doenças, melhorar a produtividade das lavouras e, finalmente, fornecer quantidades suficientes de alimentos seguros para alimentar um mundo cada vez mais faminto.

Nesta série de artigos, os especialistas da FOLIUM Science trazem reflexões sobre o papel que a biociência desempenha na cadeia de suprimento de alimentos e aproveitam suas próprias experiências pessoais para imaginar como será o futuro.

O Diretor Técnico da FOLIUM Science, Dr. Hadden Graham, compartilha seus pensamentos sobre alguns dos maiores avanços da biociência.

“A biotecnologia tem sido importante por milhares de anos, desde os tempos dos antigos egípcios, quando a fermentação era usada para preservar os alimentos. A seleção para o melhoramento de plantas tem sido realizada há séculos, mas grandes avanços começaram a ocorrer após a maior compreensão de como acelerar esse processo e de como obter resultados previsíveis com base no entendimento da composição genética dos organismos”.

A genética está no cerne de grande parte da ciência aplicável à cadeia de suprimento de alimentos. Um bom exemplo disso é a melhoria da qualidade das matrizes para a produção de aves de corte pelos criadores.

“Esses criadores não estão usando a genética molecular (GM) para melhorar seu plantel. Eles estão realizando a seleção com base no desempenho e usando grandes volumes de dados biológicos (big data) para identificar e expressar as características genéticas desejadas na próxima geração. E não se trata apenas de desempenho. A seleção genética promoverá uma melhor saúde e bem-estar animal, por meio da seleção de maior força das pernas ou resistência dos ossos, por exemplo. Temos, atualmente, um profundo entendimento sobre a genética animal, mas ainda precisamos aprender mais sobre como fornecer a genética por meio de alimentos para ajudar a controlar as doenças ”

Mas disponibilizar a avançada biociência e suas inovações ao mercado tem seus desafios. Particularmente, na opinião de Hadden, quando se trata dos consumidores.

“Algumas pessoas pensam que são as Agências Regulatórias que apresentam a maior barreira à inovação em biociência, mas um problema ainda maior pode ser a maneira de como os consumidores a percebem. Os consumidores geralmente temem o desconhecido e, no geral, não entendem a ciência. Isso não é necessariamente culpa deles, uma vez que a ciência tem aumentado sua complexidade e a sua compreensão é muito mais difícil do que era 20 anos atrás, entretanto, o grau de resistência dos consumidores a alguns aspectos da biociência tem limitado algumas de suas aplicações, mesmo considerando que as Agências Regulatórias já tenham estabelecido os adequados sistemas e processos regulatórios.”

A presença diária de cientistas e especialistas nas manchetes, como resultado da pandemia do coronavírus, poderá resultar em maior confiança dos consumidores na ciência, juntamente com o maior interesse sobre a origem da nossa comida.

“Governos de todo o mundo estão percebendo a importância de ouvir os especialistas. Eles precisam que os cientistas lhes digam o que fazer, pois não há outra maneira de lidar com os problemas que temos que enfrentar no mundo de hoje. Isso se aplica ao fornecimento a longo prazo de nossos alimentos, bem como ao combate às doenças. Para os consumidores, a questão principal será em torno da confiança. Conseguirá a ciência recuperar a confiança dos consumidores, tão erodida nos últimos anos? Devemos esperar, no mínimo, uma mudança de atitude frente às pessoas com genuíno conhecimento e experiência. Este é um momento importante para a indústria de biotecnologia. Estamos à procura de soluções para alguns dos grandes problemas de saúde de hoje, incluindo muitos tipos de câncer e doenças. Nossa tecnologia Guided Biotics® com base em edição gênica (CRISPR) faz parte disso”.

(Baixe nosso guia técnico para saber mais em http://foliumscience.com/our-technology/)

Hadden tem demonstrado seu pioneirismo em fornecer ao mercado soluções inovadoras com bases em biociência, para a cadeia de suprimento de alimentos, desde o final dos anos 80, quando as enzimas alimentares foram lançadas com ineditismo pela Empresa Finnfeeds, produtora de aditivos alimentares. Embora as enzimas venham sendo usadas inadvertidamente por séculos na produção de cerveja e queijo e estudadas em testes de desempenho em animais desde a década de 1920, essa indústria multibilionária nasceu apenas após o surgimento da correta oportunidade de mercado.

“Embora a ação das enzimas na ração animal seja bem compreendida, o catalisador e a inovação comercial foram o impacto que as enzimas alimentares tiveram nas aves alimentadas com cevada. A cevada cultivada no mercado interno era significativamente mais barata que o trigo importado, mas historicamente criava problemas com resíduos da digestão quando servida às aves. A adição de enzimas na ração transformou esse problema, como dizem, em parte da história. Este foi um exemplo de onde a boa ciência reagiu à oportunidade do mercado e foi rapidamente transformada, por cientistas astutos, em uma aplicação comercial”.

Dessa forma, quais lições podemos aprender com essas reflexões?

Primeiramente, embora a biociência tenha desempenhado, por séculos, seu papel na produção de alimentos seguros, nunca foi tão grande a importância de fornecer soluções baseadas na ciência para a cadeia de suprimento de alimentos. O crescimento populacional e a mudança nos padrões de consumo do público significam que a eficiência da produção dependerá de um profundo entendimento dos fatores que promovem uma maior produtividade. Além dessas pressões em curso, as ameaças atuais à saúde humana decorrentes da resistência das bactérias e da pandemia viral são muito reais e só podem ser resolvidas com o empenho em investir na pesquisa e inovação necessárias.

Em segundo lugar, devemos esperar ver a ciência como o herói em nossas histórias futuras e o retorno de um mundo onde a ciência supera a política. Ou, pelo menos, é o que devemos esperar.

E, finalmente, existem enormes oportunidades comerciais para investidores em biotecnologia e para organizações voltadas para a ciência, que sejam capazes não apenas de desenvolver produtos para aumentar a produtividade das lavouras e para apoiar a produção de alimentos seguros, mas que sejam também capazes de estabelecer operações comercias para o rápido lançamento ao mercado.